[ADDU ELECTRIC MOTORS |NE}

LUSA: (888) 932-9183 CANADA: (905) B29-2505

(&9 Over 100 years cumulative experience

@ 24 hour rush turnaround / technical support service

&) Established in 1993

The leading independent repairer of servo motors and drives in North America.

Visit us on the web:

WWW.SErvo-repair.com
WWW.servorepair.ca

www.ferrocontrol.com
www.sandvikrepair.com
www.accuelectric.com

Scroll down to view your document!

For 24/7 repair services :

USA: 1 (888)932-9183
Canada: 1 (905) 829 -2505

Emergency After hours: 1 (416) 624 0386

Servicing USA and Canada

Defining Moves

Application Design

The information in this chapter will enable you to:

0 Recognize and understand important considerations that must be addressed
before you implement your application

0 Understand the capabilities of the system

Customize the system to meet your requirements

O

0 Use sample applications to help you develop your application

The following section describes things you should consider when creating
move profiles with the Compumotor Plus.

Application Considerations

Position
Accuracy
Versus
Repeatability

This section describes some differences between theoretical and real-world
performance in defining moves.

In positioning systems, some applications require high absolute accuracy.
Others require repeatability. You should clearly define and distinguish these
two concepts when you address the issue of system performance.

For many systems, the term accuracy is used when repeatability is required.
When the motor always moves to the same distance from the same position,
the primary positioning goal is not accuracy, but repeatability.
Repeatability measures how accurately you can repeat moves to the same
position. For example, a bottle labeling machine must rotate one revolution
each time a label is applied. Since the motor always ends up in the same
position and is always moving the same direction, repeatability is the
dominant accuracy factor.

Accuracy on the other hand, is the error in finding a random position. For
example, suppose the job is to measure the size of an object. The size of the
object is determined by moving the positioning system to a point on the
object and using the move distance required to get there as the

[l Application Design 27

Positioning Modes

28

Calculating
Move Times

Incremental vs.
Absolute
Positioning

Incremental
Moves
(Preset Mode)

Example

Absolute Moves
(Preset Mode)

measurement value. In this situation, basic system accuracy is important.
The system accuracy must be better than the tolerance on the measurement
that is desired.

Consult the technical data section of The Compumotor Catalog for more
information on accuracy and repeatability.

You can calculate the time it takes to complete a move by using the
acceleration, velocity, and distance values that you define. However, you
should not assume that this value is the actual move time.

There is calculation delay and motor settling time that make your move
longer. After you issue the Go (G command the indexer can take up to 100ms
to calculate the move before the motor starts moving. You should also allow
some time for the motor to settle into position. There is normally a delay of
less than 30ms.

TTotaI = TCaIculation + TMove + TSettling

You can virtually eliminate the calculation delay by using predefined moves
(GDEF). This feature is available in Z3 and higher software revisions.

A preset move is a move with a distance that you specify (in motor steps). You
can select preset moves by putting the Compumotor Plus into normal mode
using the Mode Normal (M) command. Preset moves allow you to position
the motor in relation to the motor's previous stopped position (incremental
moves) or in relation to a defined zero reference position (absolute moves).
You can select incremental moves by using the Mode Position Incremental
(MPI') command. You can select absolute moves using the Mode Position
Absolute (MPA) command.

When you are in the Incremental mode (Pl), a preset move rotates the motor
the specified distance from its starting position. For example, to move the
Compumotor Plus motor 2 revolutions. You must specify a preset move with
a distance of +10,000 steps, assuming a resolution of 5,000 steps per
revolution. Every time the indexer executes this move, the motor moves 2
revolutions from its resting position. You can specify the direction of the
move in one command. You specify the direction by using the optional sign
(D+10,000 or D-10,000), or you can define it separately with the Set Direction
(H command (H+ or H-).

Command Description

> MPI Set to Incremental Position mode
> A2 Set acceleration to 2 rps2

> V5 Set velocity to 5 rps

> D1&X3AD Set distance to 10,000 steps

> G Execute the move (Go)

> G Repeat the move (Go)

> H Reverse direction of next move
> G Execute the move (Go)

The motor moves 2 revolutions and stops. It then moves another 2
revolutions in the same direction and stops. The motor changes direction
and moves 2 revolutions.

A preset move in the Absolute mode (MPA) moves the motor the distance that
you specify (in motor steps) from the absolute zero position. You can set the
absolute position to zero with the Position Zero (PZ) command, the Reset (2)
command, or by cycling the power to the drive. The absolute zero position is
initially the power-up position.

Compumotor Plus ™ User Guide

The direction of an absolute preset move depends upon the motor position at
the beginning of the move and the position you command it to move to. For
example, if the motor is at absolute position +12,800, and you instruct the
motor to move to position +5,000, the motor will move in the negative
direction a distance of 7,800 steps to reach the absolute position of +5,000.

The Compumotor Plus powers up in Incremental mode. When you issue the
Mode Position Absolute (MPA) command, it sets the mode to absolute. When
you issue the Mode Position incremental (MPl) command the unit switches
to Incremental mode. The Compumotor Plus Drive retains the absolute
position, even while the unit is in the Incremental mode. You can use the
Position Report (PR) command to read the absolute position.

Example
Command Description
> MPA Set to Absolute Position mode
> A2 Set acceleration to 2 rps
> V1@ Set velocity to 10 rps
> PZ Set the current position to as home
> D502 Set distance to 5,000 steps
> G Execute the move (Go)
> D12X3D Set distance to 10,000 steps
> G Move the motor to absolute position 10,000 (Go)
> D@ Set the move distance to 0
> G Execute the move (Go)
> MPI Set indexer to Incremental Position mode

The motor moves 1 revolution and stops. It then moves another revolution
and stops. The motor then moves in the opposite direction two revolutions.

Programming Highlights

This section contains information you will need when programming the
Compumotor Plus.

Interactive Programming

You can operate the Compumotor Plus RS-232C interface in two modes based
on the needs of your application. The two modes are interactive and non-
interactive. In the interactive mode the Compumotor Plus returns a prompt
(>) when it is ready for another command. Use the Enable Interactive Mode
(SSI @ command to make the Compumotor Plus interactive. You use the
non-interactive mode when controlling the Compumotor Plus from a pre-
programmed computer (i.e., not from terminal mode). You do this because it
is easier for the computer to understand the Compumotor Plus without the
prompt (>) character coming back after each command.

When you enable the interactive mode, the device address must be set to 1.
The indexer responds with a > or a ? when it receives a command. It
responds with a > when the command has been successfully processed and a
question mark (?) when it does not receive a valid command. If you enter a
valid command, but enter an invalid range (e.g., V70), the Compumotor Plus
responds with a ?. These interactive responses are preceded with a carriage
return and a line feed. You must enter and define entire loops and sequences
before the system provides an interactive response.

Programmable Delays

You can use the Time (T) command to halt the operation of the indexer
function for a preset time. If the Compumotor Plus is in Continuous mode,
you may use the Time (T) command to run the motor at continuous velocity
for a set time, then change to a different velocity.

[l Application Design 29

Example

In the Preset mode, the motor finishes the move before the indexer executes
the time delay.

Command Description

> PS Wait for the controller to receive a Continue (C) command before
executing the next command

Move motor 25,000 steps
5 Wait 5 seconds after the move ends
Change motor direction
Move motor 25,000 steps in the opposite direction
Continue execution

V.V V VYV
OOIHd®

Program Branching

30

Looping

Example

Nesting Loops

Example

This section discusses methods of changing the path of program execution
through a conditional statement like | F, or through a fixed branch such as a
loop or goto.

This section discusses methods of establishing loops in the program you
write for your application. Loops are implemented with the Loop (L)
command and the End Loop (N) command. Loops can be created individually
or nested up to 16 levels deep.

The Loop (L) command repeats only buffered commands. Buffered
commands are queued up and executed in order, so you can enter sequences of
commands which are then executed one after the other. Place the commands
to be executed between the L command and the Ncommand. They are
repeated the number of times indicated in the L command, for example, L3
causes three loops to be executed.

You can use the Immediate Pause (U) command to pause execution of the loop
while it is in progress. The Ucommand does not work in Continuous mode.
To resume loop execution, issue the Continue (C) command.

The example below shows a sample loop. In this example, the motor makes 2
moves with a half second delay between the moves.

Command Description

> L2 Loop twice

> G Execute the move (Go) [Loop
>T.5 Wait 0.5 seconds

> N End the loop

The example below shows how you can nest one loop inside another loop.

Command Description

> L Loop indefinitely

> R Send a carriage return

> L2 Loop twice

> G Execute the move (Go) — Loop
>T.5 Wait 0.5 seconds — Loop

> N End the loop

> N End the loop

Compumotor Plus ™ User Guide

Branching with ~ You can perform conditional branching with the Compare Error Flag

| F (I FER), Compare User Flag (I FFL), and Compare Trigger Status (I FTR)
commands. All three of these commands are very similar to | F_THEN
statement in Basic programming. If the condition evaluates true, the
Compumotor Plus performs the commands that immediately follow the | F
command. If the condition evaluates false, the Compumotor Plus skips all of
the commands that follow the | F command until it reaches the End of | F
Statement (NI F) command.

IF An Error The | FER command checks to see if there is an error (such as slip fault). If

Occurs there is an error, the commands immediately following the | FER are
executed, otherwise the commands immediately following the End of IF
statement are executed. For a detailed description of this command, refer to
Chapter 5, Software Reference.

Example
Command Description
> XE19 Erase Sequence #10
> XD1@ Define Sequence #10
> | FER If hardware error or limit encountered, then execute the following
> " SYSTEM_ Write to RS-232C port to inform user of system status
> "ERROR_
> "OR LIMT_
> " ENCOUNTERED _
> ST1 Turns amplifier off
> ELSE Otherwise
> " SYSTEM_ Writes to RS-232C Port
> " READY_
> NF Ends IF statement
> XT Ends sequence definition
IE U El The Compare User Flag (I FFL), command compares the pattern set by the
Ser Flags User Flag (SFL) command. If the patterns match the commands following
the | FFL command are executed. If the patterns do not match the program
continues after the next Nl F command (End If).
This command is useful if you wish to make a decision based on previous
program events that set or clear the user flag bits. For example, in an
application with several sequences (or programs), at the end of each
sequence, you can assign different bit patterns with the SFL command. If
you select these sequences from the host computer, you may wish to make
different moves depending on the sequence you ran. For a detailed
description of this command, refer to Chapter 5, Software Reference.
Example
Command Description
> PS Wait for the controller to receive a Continue (C) command before
executing the next command
> SFL1d19 Set user flag bits 7 and 5 and clears bits 6 and 4, the remaining bits
are not altered
> | FFL1219D If user flag bits 5 and 7 are set, and bits 6 and 4 are clear, perform
the following commands
> Al@ Set acceleration to 10 rps2
> V5 Set velocity to 5 rps
> D250 Set distance to 25,000 steps
> G Execute the move (Go)
> NF End IF statement
> C Continue execution

The | FFL pattern matches the SFL setting and the motor moves 25,000 steps.

[l Application Design 31

IF a Trigger
Input

Example

Subroutines

Example

The | FTR command compares its pattern with the state of the
programmable inputs defined as trigger inputs. If the patterns match the
following commands are executed. It the patterns do not match, the
commands following the next Nl F command are executed. This command is
useful for branching and performing conditional moves using the
programmable inputs. For a detailed description of this command, refer to
Chapter 5, Software Reference.

Command

>

V V.V V V V

V VV V V V V V

| FTRXXX1@X

AlQD

V5
D253
G
NI F
| FTRXXX@LX

AlD

V5

9:51% %}

G

NI F

| FTR1XX
1" DONE
NI F

Description

If sequence #1 is active and sequence #2 is not active, execute the
following commands:

Set acceleration to 10 rps2

Set velocity to 5 rps

Set distance to 25,000 steps

Execute the move (Go)

End IF statement

If sequence #1 is not active (open)and sequence #2 is active
(closed), issue the following commands:

Set acceleration to 10 rps2

Set velocity to 5 rps

Set distance to 5,000 steps in the opposite direction

Execute the move (Go)

End IF statement

If Trigger #1 is active, do the following command.

End message DONE

End IF statement

When you use the Goto Sequence (XG and the Execute a Sequence (XR)
command sequences, you can execute different sequences from within a
sequence.

These commands are similar to GOTO and GOSUB commands in Basic
programming. If you use an XGcommand, the program will call or go to the
sequence that you specified in the XGcommand. After executing the specified
sequence, the system will not return to the original sequence. You could
cause it to return to the original sequence by issuing another XG command,
but there is a better way, the Run Sequence (XR) command. You use the XR
command when you want to return to the calling (original) sequence upon

completion of the called sequence when a Terminate Sequence (XT)
command is encountered.

You can make as many as 16 calls with the XR command before returning to

the calling sequence.

There is no limit to the number of times you can use

the XG command since the program need not return control to the original
sequence.

Command

V V.V VVV VYV V VYV

XE2
XD2
AlQD
V5

D2 332
G

XT

XE3
XD3
AlQD

V5

Compumotor Plus ™ User Guide

Description
Erase sequence #2
Define sequence #2

Set acceleration to 10 rps2
Set velocity to 5 rps

Set distance to 2,000 steps
Execute the move (Go)
End sequence #2 definition
Erase sequence #3

Define sequence #3

Set acceleration to 10 rps2
Set velocity to 5 rps

> D200 Set distance to 2,000 steps (CCW)
> G Execute the move (Go)

> XT End sequence #3 definition

> XE1 Erase sequence #1

> XD1 Define sequence #1

> XR2 Execute sequence #2

> XR3 Execute sequence #3

> XT End sequence #1 definition

> XR1 Execute sequence #1

In the previous example, when you execute sequence #1, the program moves
to sequence #2. After executing sequence #2, the program returns to
sequence #1. The program then moves to execute sequence #3.

Example

Command Description
> XE1 Erase sequence #1
> XD1 Define sequence #1
> | FTRL If TRIG 1 is active (Closed)
> X& Execute sequence #2
> NF End IF statement
> Al Set acceleration to 1 rps?
> V5 Set velocity to 5 rps
> D250 Set distance to 25,000 steps
> G Execute move.
> XT End sequence #1 definition
> XR1 Execute sequence #1
In the previous example, when you execute Sequence 1, the program checks
the input pattern. If TRI Gl is on, the program moves to execute Sequence 2.
After executing sequence 2, program does not return to Sequence 1. If TRI G1
is off, the program ignores the X& command and makes the 25,000-step
move.

Input/Output

The following section describes operation of the programmable inputs and
outputs, and the move completion signals.

Programmable Outputs (POBSs)

You can turn the programmable outputs (OQUT 1 - OUT 2) on and off with
the Ocommand. Outputs OUT 1 and OUT 2 are factory set as programmable
outputs. However, you can configure the outputs to perform different
functions with the Output Mode (OM command. Refer to the OMcommand in
Chapter 5, Software Reference for descriptions of the available functions.
You can use these outputs to turn on and off other devices (i.e., lights,
switches, etc.).

Example
Command Description
> PS Pause command execution until the controller receives a C
> AlQ Set acceleration to 10 rps2
> V5 Set velocity to 5 rps
> D250 Set distance to 25,000 steps
> OML Set OUT1 and OUT2 as programmable outputs
> 019 Turns OUT1 on and OUT2 off
> G Execute the move
> Ol Turn OUT1 off and OUT1 on
> C Continue execution

[l Application Design 33

This example above defines OUT1 and OUT2 as programmable outputs.
OUT1 turns on and QUT2 is turned off, the motor moves 25,000 steps. When
the motor stops and OUT1 turns off and OUT2 turns on.

Event Completion Signals

You can program the Compumotor Plus to notify you when a move or other
event is complete. Note: You may only signal the completion of buffered

events.
O LF Line feed
O (R Carriage return
a (@) Output command
O " Quote command (literal string)
Example
Command Description
> A2 Set acceleration to 2 rps?
> V.5 Set velocity to 0.5 rps
> D12502 Set distance to 12,500 steps
> G Execute the move (Go)
Line feedJ > 1LF Send a line feed over the RS-232C interface
The motor moves 12,500 steps. When the move is complete, the Compumotor
Plus sends a line feed to the host over the RS-232C interface.
Example
Command Description
> A2 Set acceleration to 2 rps2
> V.5 Set velocity to 0.5 rps
> D125¢2 Set distance to 12,500 steps
> G Execute the move (Go)
Carriage returnfJ > 1CR Send a carriage return
The motor moves 12,500 steps. When the move is complete, the Compumotor
Plus sends a carriage to the host over the RS-232C interface.
Example
Command Description
> A2 Set acceleration to 2 rps?
> V.5 Set velocity to 0.5 rps
> D125@9 Set distance to 12,500 steps
> G Execute the move (Go)
Outputd > Ol Turn on Output #1
The motor moves 12,500 steps. When the move is complete, Output 1 is
turned on.
Example
Command Description
> A2 Set acceleration to 2 rps2
> V.5 Set velocity to 0.5 rps
> D125@0 Set distance to 12,500 steps
> G Execute the move (Go)
MessagelJ > 1" DONE Set the DONE message

The motor moves 12,500 steps. When the Compumotor Plus completes the
move, the unit issues the DONE message from the Compumotor Plus to the
host over the RS-232C interface.

34 Compumotor Plus ™ User Guide

Remote Jogging

Step O

Step O

Step O

In some applications, you may want to adjust the motor position by toggling
a switch on and off. The motor moves when the switch is on and stops when
the switch is off. This is called jogging the motor. You can configure the
Compumotor Plus for jogging operation by doing the following.

0 Define programmable inputs as jog inputs using the Input Mode (I M command
O Define the jogging velocity with the Jog Velocity (JV) command

O Enable jogging with the OSE1 command
g

Attach a switch to the jog inputs. Use a two pole switch for jogging both
directions

0 Turn the switch on to jog the motor
The following example shows how you can define power-up sequence #40 to
set up jogging.

Define a power up sequence:

Command Description
> XE4Q Erase sequence #40
> XD4gd Define sequence #40
JA2 Set jog acceleration to 2 rps?
OSE1 Enables jog function
JV5 Set jog velocity to 5 rps
I M3 Define TRIG 2 and TRIG 3 as jog CW and CCW lines
XT End sequence definition
> SV Saves sequence definitions into EEPROM
> Z Resets the Compumotor Plus controller

>

Turn on TRIG 2 input to move the motor in the CW direction at 5 rps (until
you turn off TRIG 2).

Turn on TRIG 3 input to move the motor in the CCW direction at 5 rps (until
you turn off TRIG3).

Defining and Using Programs (Sequences)

Pertinent
Commands

Use the following commands to define, erase, and run programs. In the
Compumotor Plus language programs are referred to as sequences of
commands or sequences. Refer to Chapter 5, Software Reference, for detailed
descriptions and syntax of the following commands.

Command Description

> XD Start sequence definition

> XE Delete sequence EEPROM

> XQ Set/reset interrupted Run mode

> XRP Run sequence with a pause

> XT End sequence definition

> XU Upload sequence

> XR Run sequence

> SSJ1 Run a sequence defined by BCD sequence inputs

> XG Exit current sequence and move to execute another sequence

A sequence is a series of commands. The commands are executed in order
whenever the sequence is run. Only buffered commands may be used in a
sequence. Immediate commands cannot be stored in a sequence, just as they
cannot be stored in the command buffer.

The Compumotor Plus has 1,500 bytes of non-volatile memory to store 40
sequences. The sequences may have different lengths, so you may have one

[l Application Design 35

Example

long sequence or several short ones, as long as the total length does not
exceed 1,500 characters.

To define a sequence do the following:

O Enter the Define Sequence (XD) command immediately followed by sequence
identifier number (1 to 40) and a delimiter. For example, XD1.

O Enter the commands you want to execute when the sequence is run.
0 Enter the Terminate Sequence (XT) command to end the sequence definition.
O Enter the SAVE command to save the sequence.

All commands that you enter after the XD command and before the XT
command are executed when the sequence is run. An example is provided
below.

Command Description

> XE1 Erase sequence #1

> XD1 Begin definition of sequence #1
A2 Set acceleration to 2 rps?
V1@ Set velocity to 10 rps
9:51%.% 1] Set distance to 5000 steps
G Execute the move (Go)
H Reverse direction
G Execute the move (Go)
XT End definition of sequence

> XR1 Runs sequence #1

Sequence #40 is reserved for power up execution.

You can run a sequence by entering the XR command and sequence identifier
number (in the range of 1 to 39) and a delimiter.

You can also run the sequences by specifying the sequence number in BCD on
the programmable inputs. To accomplish this do the following.

0 Define some programmable inputs as sequence-select inputs using the Input
Mode (I M command

0 Enable the Continuous Sequence scan mode (SSJ1), you can also execute a
sequence by turning on Sequence inputs to indicate which sequence you wish
to run

Once you define a sequence, it cannot be redefined until you delete it. You can

delete a sequence by entering the XE command immediately followed by a
sequence identifier (1 to 40) and a delimiter. You may then redefine that
sequence.

Sequences that you define are not saved into the non-volatile memory, until
a Save (SAVE or SV) command is issued.

Sequence Selection Methods

36

After you define the sequences from the RS-232C interface, you can execute
the sequences by using one of the following methods.

0 Standalone Use thumbwheel switches to select and run the
sequence

0 Computer Interface Use the Execute Sequence (XR) command to run the
sequences

0 PLC Use the sequence select inputs to run a sequence

Compumotor Plus ™ User Guide

Standalone Operation

Power-Up
Sequence
execution

Example

Remote
Sequence
Execution

Step U
Example

This section explains and provides examples of how to store programs and
run them with remote switches, and run them automatically when you power
up the system. First, you will need to enter the programs into the
Compumotor Plus. You will need a terminal or a computer with RS-232C
communication capabilities for programming the Compumotor Plus
controller.

Sequence #40 is always run on power up and after a Reset (Z) command. To
run another sequence on power up, put an XR or XG at the end of sequence
#40. If sequence #40 is empty, no sequence is run on power up. Refer to
Chapter 5, Software Reference, for detailed descriptions and syntax of the
following commands.

Command Description
> XE4D Erase sequence #40
> XDAD Begin definition of sequence #40
LD3 Disable limits if they are not connected
A2 Set acceleration to 2 rps2
\5 Set velocity to 5 rps
D125 Set distance to 12,500 steps
G Execute the move (Go)
XT End sequence definition
>Z Reset the controller and runs sequence #40

A power-up sequence is typically used to store set-up or initialization
parameters that your application requires. Some of these commands are
listed below.

0 SSsJ1 Continuous Sequence Scan mode
O SN Scan time

o JA Jog acceleration

O JvL Jog velocity low

0 JVH Jog velocity high

You can put any buffered commands into Sequence #40 to have them
executed during power-up. Immediate commands cannot be put into
sequences.

You can execute sequences remotely using a switch selection by doing the
following.

Define a power up sequence

Command Description
> XE40 Erase sequence #40
> XD4@ Define sequence #40
JA2 Set jog acceleration to 2 rps2
OSE1 Enables jog function
JV5 Set jog velocity to 5 rps
I M3 Define TRIG 2 and TRIG 3 as jog CW and CCW lines
XT End sequence definition

[l Application Design 37

PLC Operation

38

Step U

Step U
Step U

Scanning for
Sequence
Execution

Define all sequences that your application may require. The following
example defines sequence #1.

Command Description
> XE1 Erase sequence #1
> XD1 Define sequence #1
Al Set acceleration to 1 rps?
V2 Set velocity to 2 rps
D122 Set distance to 1,000 steps CW
G Execute the move (Go)
XT End sequence definition

>

The following example defines sequence #2.

> XE2 Erase sequence #2
> XD2 Define sequence #2
Al Set acceleration to 1 rps2
V2 Set velocity to 2 rps
D 122 Set distance to 1,000 steps CCW
G Execute the move (Go)
XT End sequence definition

>
Enter the XR1 command to move the motor 1,000 steps CW.
Enter the XR2 command to move the motor 1,000 steps CCW.

You can use a PLC to execute 39 of the 40 sequences that are stored in the
Compumotor Plus controller (the 40th is reserved for power-up execution).
You can configure up to eight inputs as sequence-select inputs. You can
accomplish this by changing the BCD values of the PLC outputs

Changing the BCD values of sequence input lines results in a new sequence

being run that corresponds to the new value. The sum of the values for ach
input determines which sequence the indexer will run. For example, if you
set up all six inputs as sequence-select inputs, the lowest input (SEQ 3) will

have the least significant value and the highest input (TRIG 1) will have the
most significant value. Refer to the table below.

Do the following to set the Compumotor Plus inputs as sequence select lines.

O Enter the Input Mode (I M command to set up the inputs as sequence-select
inputs.

O Enter the SSJ1 command to configure the Compumotor Plus controller to read
sequences via BCD input.

O Optionally enter the XQL command to configure the Compumotor Plus controller
to use the Interrupted Run mode. See below for a detailed explanation.

O Optionally, enter the Scan (SN) command to tell the Compumotor Plus how long
the inputs must be stable before accepting the input as valid. See below, or
Software Reference, for a detailed explanation.

Once you issue the SSJ1 command, the Compumotor Plus controller scans
the sequence select inputs to find the sequence that you have specified for
execution. If it finds a valid sequence number on the inputs (any number
other than zero) it runs the sequence. The Compumotor Plus completes the
execution of the desired sequence and the process begins again.

The Interrupted Run Mode (XQLl) command makes the Compumotor Plus wait
until all of the sequence inputs are turned off (sequence zero) before selecting
the next sequence to execute.

Compumotor Plus ™ User Guide

Sample PLC
Applications
and Commands

Step U

Step U

Step U

Step U

The Scan (SN) command determines how long the sequence-select input must
be maintained before the controller executes the program. This is also
called the debounce time.

This section provides step-by-step procedures to run sequences from your
PLC. First, you need to enter the programs into the Compumotor Plus. You
will need a terminal or a computer with RS-232C communication capability.
You need to define the sequences before you can execute them with your PLC's
BCD outputs. The Compumotor Plus controller saves these sequences with
the Save (SV) command.

Define a power-up sequence

Command Description

> XE49 Erase sequence #40

> XD4g Define sequence #40

> SSJ1 Execute sequences via PLC input

> SN2@ Set scan time to 20 ms

> XQL Set to Interrupted Run mode

> Al@ Set acceleration to 10 rps2

> V2 Set velocity to 2 rps

> | M3 Define all six TRIG/SEQ inputs as sequence-select lines
> LD3 Disable the limits (if they are not connected)
> XT End the sequence definition

Every time you power up the Compumotor Plus controller, it executes these
commands and enables the Compumotor Plus to read up to 39 sequences
from the sequence select inputs.

Define any sequences that your application may require.

Command Description

> XE1 Erases sequence #1

> XD1 Defines sequence #1

> D203 Set distance to 2,000 steps (CW)
> G Execute the move (Go)

> XT End sequence #1 definition

> XE2 Erases sequence #2

> XD2 Defines sequence #2

> DAGKD Set distance to 4,000 steps (CW)
> G Execute the move (Go)

> XT End sequence #2 definition

> XE3 Erase sequence #3

> XD3 Define sequence #3

> D8WXD Set distance to 8,000 steps (CW)
> G Execute the move (Go)

> XT End sequence #1 definition

> XE39 Erase sequence #39

> XD39 Define sequence #39

> D 140230 Set distance to -14,000 steps (CCW)
> G Execute the move (Go)

> XT End sequence #39 definition

Verify that your programs were stored properly by uploading each entered
sequence (XU). If you receive responses that differ from what you
programmed, re-enter those sequences.

Save the sequences entered by typing the Save (SV) command

[l Application Design 39

Step U Run each program from the RS-232C interface with the Run Sequence (XR)
command. Make sure that the motor moves the distance that you specify.

Step O Assuming your PLC accepts open collector outputs connect the inputs and
outputs as shown in the following table. If not, you will need to add pull up
resistors to the outputs.

PLC Compumotor Plus
Output 6 Trig 6

Output 5 Trig 5

Output 4 Trig 4

Output 3 Trig 3

Output 2 Trig 2

Output 1 Trig 1

Ground 1/0 Ground

Step O Refer to the user guide that accompanied your PLC unit to turn on the proper

combination of outputs to execute one of the four sequences programmed and
stored in the Compumotor Plus controller.
O Turning on only the PLC's Output 1 will execute sequence #1
O Turning on only the PLC's Output 2 will execute sequence #2
O Turning on only the PLC's Outputs 1 and 2 will execute sequence #3
O Turning on only the PLC's Outputs 1, 4, 5, and 6 will execute sequence #39

te Cycle power to the Compumotor Plus. The system will execute Sequence #40.

p
Step O Turn on the appropriate sequence-select input [set for the least Scan

Time(SN)] to execute the proper sequences. Since the sequence feature (refer
to the XQL command) was enabled during the power-up sequence, your PLC

program must turn off all of the sequence-select inputs before you can select
another sequence.

Registration and Synchronization

The registration function allows you to make a move within a move based on
an external event. This is done by responding to an external trigger input,
which causes the existing move to blend into a new move (the registration
move). The registration move causes the motor to accelerate or decelerate as
required to get to the specified end point using the parameters defined for the
registration move.

Registration

Occurs . .
> Original Here v Registration
S MOVe \ A Move
q‘) .
> Path if /

Vv - \ Registration
\/does not occur
D .
-4——— | ockout ——» Distance
Distance (1)

[0 Hint The typical use of registration moves is to synchronize web applications. For
Registration is ~ €xample, a sheet of pre-printed cardboard is to be cut up into paper plates.
usedto Registration moves synchronize the cutter with the blank space between the
synchronize plates. This is done by using a sensor which picks up something unique about
materials which the web, such as a registration mark (hence the name registration moves). The
slip or change web is then moved to a point a fixed distance from the registration mark and

sizewhen an operation such as a cut is made.
processed.

40 Compumotor Plus ™ User Guide

Example

To specify the move, the acceleration, velocity, and distance of the move as
well as the lockout distance are required. The lockout feature is designed to
eliminate false triggering. The lockout distance is the distance to move
before looking for the registration mark. Refer to the above figure. The
lockout distance is specified from the beginning of the current move, the
move that is aborted when the registration mark is detected. Lockout is
required to prevent the registration sensor from triggering falsely on a
pattern printed on the web.

To define the registration move do the following.

O Issue the registration command: REGa, v, d, | where a is the acceleration, v is
the velocity, d is the distance, and / is the lockout distance of the registration
move. This defines the registration move.

O Issue the SSK1 command. This enables the registration feature.

Once the registration move has been defined and enabled, the Compumotor
Plus begins looking for the registration mark during any move except jog
and homing moves. This condition is referred to as being in registration
mode.

If the parameters specified are impossible to execute the registration
command is ignored. If the lockout distance is longer than the currently
defined move the registration move is never executed. Refer to Chapter 5,
Software Reference for information about how to check the move to see if it
is impossible to execute.

If the currently defined move is a continuous move the registration feature
operates normally, but should registration never occur the motor will
continue on just as it would if it were not in registration mode. In contrast,
when registration is used with preset moves, the move ends at the preset
distance defined by the distance (D) command if a registration trigger never
occurs. This is useful for indicating an error condition to the operator. It
can also keep material waste to a minimum.

Input modes (I M4 or | Mb) define an input for use as the registration input.
Additionally, two other inputs, may be defined as jog inputs. The jog inputs are
used to position the load for initial setup (refer to Software Reference).

The Compumotor Plus records the motor's position as soon as the
registration input is received. You should not use the SN command to
debounce the registration input. The debounce process introduces a variable
delay between receiving the registration signal and recording the motor
position, reducing accuracy.

Command Description

> SSK1 Enable registration

> |M Set Input mode #4 as registration input

> Al0 Set normal acceleration to 10 rps2

> V1 Set normal velocity to 1 rps

> D50000 Set normal distance to 50000

> MWN Set to mode normal

> REG50, 20, 5000, 40000 Set registration move to accel=50, vel = 20, distance from

registration mark=5,000, wait until 40m000 steps from
start of move to start looking for registration mark
*SETTING UP REG TABLE
*REG TABLE COWPLETE
> G Execute the move (Go)

[l Application Design 41

Tuning Your System

Tuning Theory

42

RS-232C
Device

The Compumotor Plus is a servo system requiring a closed feedback loop to
control the motor and thus the load. The Compumotor Plus employs a
sophisticated algorithm to control the response of the motor and its load.
This system is tunable: you can adjust its behavior to suit your needs. You
tune the system by adjusting gains. The gains are adjusted by pushing
buttons on the Compumotor Plus front panel or via commands over RS-
232C. Below is a description of how the system works, how to use it and what
to look out for.

The Compumotor Plus Drive can be divided into two major areas: the digital
controller and the analog amplifier. All of the positioning compensation
(Proportional, Integral and Derivative gains) and the velocity gains are set
by the user and processed by the digital controller board. Once the values are
set, they can be stored or saved in the EEPROM by issuing a Save (SV)
command. The Compumotor Plus is preprogrammed at the factory with
gains appropriate for the size of motor provided. Refer to the block diagram
of the Compumotor Plus Drive servo system shown below.

The controller board sends two digitized waveforms from its digital-to-
analog converters (DACs) to the analog amplifier board. These waveforms
represent two commanded, motor-phase currents. The analog amplifier
board measures the actual motor current to determine the correct voltage to
apply to the motor windings. The controller commands a desired current to
the amplifier board, the amplifier board then attempts to generate that
desired current in the motor's windings. The position of the motor's shaft is
sensed by the controller via the resolver attached to the motor. The
controller uses this position information to generate the desired current
command to the amplifiers.

Compumotor Plus Indexer/Drive Block Diagram

PIDV
Error
: Current
Computation Amplifier
RS-232C
Command Position Command ——
Processor Generator
Current Drive
Command Current
/10
Processor 1
Motor P
| i
Actual Position Built-in
Limits Resolver
Trigger Inputs
Programmable Outputs

The current command to the amplifier is based on several quantities
including the position of the servo motor's shaft, the desired position (which
is generated by the indexer), and previous position errors.

The controller subtracts the motor's actual position from this desired
position to determine the position error. The position error is put into an
equation, along with previous position errors, to generate the current
command for the amplifier.

In the Compumotor Plus, the equation is a digital approximation of an
analog continuous-time PID (proportional, integral, and derivative) and
velocity control network. The analog continuous-time PID is traditionally
used to stabilize conventional servo systems. It consists of several

Compumotor Plus ™ User Guide

potentiometers, resistors, and capacitors. In the Compumotor Plus, these
parts are replaced with digital logic controlled by a microprocessor.

The digital approximation referred to above is the discrete-time equivalent
to a continuous-time PID network. It is called a discrete-time PID network
because it operates on sampled digital data rather than on continuous analog
data. The sampling rate of the Compumotor Plus controller is the rate at
which the equation is evaluated and the current command to the amplifier is
updated. The sample rate of the Compumotor Plus controller is 3,333 times
per second, or every 300ms. This rate is sufficiently fast to provide excellent
dynamic response.

Actual motor position information is provided by a resolver built into the
motor. The resolver is read three times every update period. The desired
position is compared to the actual position and an error or correction value
is generated.

The velocity command is calculated using the following formula.

V. =Py, +1;% (d,,..)+Dy(d, —d,)
where,

V¢ is the commanded velocity

de is the position error

Pg is the proportional gain

Ig is the integral gain

Dg is the derivitive gain

General Tuning Considerations

The gains set at the factory are satisfactory for most applications, but if your
application requires higher performance, you can change these gains.

If you adjust the gains and the system appears unstable, use the Return to
Factory settings (RFS) command or pushbutton combination to return to the
factory settings (pushbuttons P and | together).

Proportional, Integral, Derivative, and Velocity tuning (P, I, D, and V) can be
implemented through RS-232C commands or through the front panel
pushbuttons. The factory values of the tuning algorithm are based on the
following.

O The ratio of load-to-rotor inertia is 10 to 1 or less

O The load is purely inertial (i.e., there is little or no friction impeding the load)
O It is directly and solidly coupled to the motor

O A 4% velocity overshoot is tolerable

If you find that your system cannot be tuned satisfactorily using the
pushbuttons on the front panel, the load to rotor inertia ratio may be higher
than the default factory gain maximums are capable of handling. This
may also be the case if there is a significant amount of friction in the system,
or the coupling to the load is torsionally flexible.

Tuning usually involves choosing between a high degree of stability
accuracy, or responsiveness. A stable system wants to remain at rest and is
therefore not responsive. It will maintain a small, repeatable, steady state
error. An accurate system which is critically damped at the end of its moves
will be somewhat stable, but the cycle time for the move will be somewhat
higher than the best the system can do. Finally, a very responsive system
will turn in very fast cycle times, but overshoot and ringing will be
significant

You can increase the speed of your machine at the price of motor/drive
heating, final position accuracy, and settling time. Or you can improve
system accuracy at the price of final position stability. In other words, you
can trade final position accuracy for system response time. All of the gains
are interactive. It may take considerable experimentation to find the exact

[l Application Design 43

Gain Descriptions

Velocity Gain

Proportional
Gain

Integral Gain

Derivative Gain

combination of gain values required to get the best performance in your
application.

As a general rule the velocity gain should be set first, followed by
proportional, integral, and finally the derivative gain. The velocity gain
affects the responsiveness of the system as a whole. The proportional gain
affects stiffness. The derivative gain affects settling time and dynamic
response. The integral gain affects the final position accuracy. All gains
interact with each other.

The following section describes the four gains found in the Compumotor
Plus: proportional, integral, velocity and derivitive. The first letters of each
gain type makes up the term PIDV which describes the tuning method used in
the Compumotor Plus.

The velocity gain affects the overall responsiveness of the system. If the
system is sluggish, increase the velocity gain. If the system overshoots
unacceptably, or the motor rings at the end of each move, reduce the velocity
gain. You can increase the derivative gain to compensate for post-move
ringing as well.

Proportional gain affects system stiffness and accuracy. As the proportional
gain increases, the influence of the feedback signal increases. If the gain is
too high, the system oscillates. This happens because very small resolver
changes are amplified into very large error signals. Eventually the motor
begins to lag behind the feedback signal, causing the feedback and the
command signals to be in phase. This is what causes oscillation.

Integral gain allows the system to compensate for steady-state position
errors (due, for example, to friction). Integral gain also reduces velocity
ripple. It does this by slowing down the electronic response time so that it
more closely resembles the response of the mechanical components of the
system.

Derivative gain adds damping to the system. This damping helps reduce the
oscillations at the end of moves, and ringing when the velocity is suddenly
changed (at the end or beginning of an acceleration ramp). When this
happens, increasing the derivative gain will reduce the oscillation. The
derivative gain adds phase lead to compensate for the system's natural phase
lag.

Tuning Your System Manually

44

The Compumotor Plus uses a conventional discrete-time PIDV servo
algorithm. The algorithm is a recursive function using four user adjustable
gains to control system responsiveness and accuracy. The four gains model
static and dynamic characteristics of the motion control system and its
load. The gains are adjusted to stabilize the system.

The four gains in a Compumotor Plus are normalized to a range of O to 100.
This makes tuning the system much simpler due to the small numbers
employed. To ensure that you have sufficient range in the gain settings a
gain maximum is provided for each gain which allows you to change the
meaning of the gain number from O to 100. Refer to the CPM Cl M CVM and
CDM commands in Chapter 5, Software Reference for more information.

Tuning a Compumotor Plus Drive servo system usually requires adjusting
only one controller gain (normally velocity). The other gains are predefined
and, in most cases, require no further adjustment.

If you find that you are tuning a given parameter in the extreme range (i.e.,
0-5% or 95-99%), you might consider changing the maximum gain value via
the M CPM CVM and CDM commands.

Once you have the system installed and the motor connected to its intended
load, you can determine whether any fine tuning is required by observing the

Compumotor Plus ™ User Guide

Pushbutton
Tuning

[0 Hint
Don't forget to
SAVE!

Tuning Via RS-
232

response of the system to commands from your indexer and by observing
how stiff the system is when at rest.

With the motor at rest, try to deflect the shaft. You should not be able to
easily turn the shaft away from its rest position. If it feels very soft, the
system gains probably need to be increased. A very soft system does not
respond very quickly to move commands.

If the shaft feels stiff, check that the system is not vibrating. If it is, the gain
may be too high. This causes the drive to provide excess current, and can
shorten the life of mechanical components. In extreme cases the vibration
grows, producing violent motions that cause the drive to fault or possibly
break the equipment it is attached to. This is called instability. For this
reason, you should tune the Compumotor Plus Drive with some caution.

There are two methods available to adjust an Compumotor Plus Drive's servo
compensation network.

0 The six pushbuttons on the Compumotor Plus Drive's front panel
0 The RS-232C communications port

The buttons are labeled UP, DOM, P, | , V, and D and are defined as follows.
Refer to Chapter 3, Installation for more information on pushbuttons.

O P selects the PROPORTI ONAL gain

O | selects the | NTEGRAL gain

O Vselects the VELOCI TY gain

O Dselects the DERI VATI VE gain

Select one of the P, I, V, or D buttons and hold it down. When you do, the two-
digit display displays the present value for the gain you have selected (from
0-99%). You should note this value in case you wish to return to it. While
holding the button for the gain you selected, push the UP button to increase
the gain. Push the DO/ button to decrease the gain. Continue to hold the UP
or DOWN button and the proportional gain changes automatically.

The value displayed when you release the UP or DOAN button becomes the
new gain setting. This value is used by the Compumotor Plus immediately.
However, you must issue a SAVE or SV command to make the change
permanent. Because the gains must be manually saved you may return to
your previous settings by resetting the drive, by cycling power, or issuing the
Z command. This recalls the last setting in non-volatile memory.

If you wish to retrieve the factory default values, all you need to do is push
both the P and | gain buttons together. This causes the factory values for
each gain to be reloaded.

After you have completed the pushbutton tuning procedure, it will be
necessary to save the values you have selected into non-volatile EEPROM.
This is done by pressing all four gain buttons (P, I, D, & V).

The tuning process of the front-panel switches can be duplicated via the RS-
232C communication port.

[l Application Design 45

You use the following commands to set the gains.

0 CPGsets the proportional gain
0 C Gsets the integral gain

O CDG sets the derivative gain

O CVG sets the velocity gain

To set the gain maximums use the following commands.
O CPMsets the proportional gain maximum

0 C Msets the integral gain maximum

O CDMsets the derivative gain maximum

O CVMsets the velocity gain maximum

Tuning Your System Automatically

46

[0 Hint Secure
the motor to the
load

With the Z5 revision level software (see the RV command), your Compumotor
Plus Drive/Indexer is equipped with the ability to tune itself. Self-tuning
refers to the procedure by which the Compumotor Plus operating system
automatically determines the proper servo gains for your application.

You use the TUNE command to implement self-tuning. Once self-tuning is
complete you have two sets of gains you can use: PIDV and Pole-placed. You
use the GAI NX command to select between the two sets of gains.

The gains computed with the TUNE command are high performance gains.
This means that they are fairly high for typical loads. Consequently, this
implementation of self-tuning is intended for loads below ten times the rotor
inertia. When large loads are used with this system, the gains computed are
typically too large to be of use. You may be able to use option four to produce
stable gains for large loads. See below for a description of the TUNE options.

If you need to drive loads in the 10:1 rotor inertia range and above, you
should use PIDV tuning. If you find that the resulting gains produce
excessive noise in the motor, you may want to filter out this noise with the
FI LT command. The FI LT command sets the digital torque filter's time
constant. Since larger loads typically result in lower system bandwidth, you
may be able to increase the digital torque filter's time constant from the
default value of 5 ms to a value as high as 10 ms.

The algorithm used in the Compumotor Plus is referred to as a self-tuning
regulator, and it consists of two main stages. Stage one is system
identification. When the TUNE command is invoked, the Compumotor Plus
executes a brief predefined move sequence. This sequence consists of a series
of short step moves. Step moves are moves with infinitely high acceleration
and deceleration. The move sequence involves both the motor and your
application load. Since some applications have restrictions on how they can
move, the TUNE command has three move options described below.

O Move one (default) consists of back-and-forth, 512 step moves (at 12,800
steps/rev)

O Move two consists of CW 512 step moves
O Move three consists of CCW 512 step moves

During the move sequence, the Compumotor Plus records the value of current
sent to the motor, and the position of the motor for 1500 time intervals. This
data is then used to estimate the performance characteristics of the motor
and load. In particular, the system determines the total load of the motor
and the application.

For system identification to be as accurate as possible, it is important that
you secure the motor to its mount and firmly couple the shaft to the load. If
the motor body moves around or the coupler slips during the preset move, the
resulting data will be flawed and the system will not be able to compute the
proper gains.

Compumotor Plus ™ User Guide

After the data has been acquired, the operating system shuts the amplifier
off and analyzes the data. The Compumotor Plus issues the following
message.

*TUN NG_BEGUN
>

Because of the large amount of data being processed, this analysis takes
approximately two minutes to complete. At the end of this time, the system
uses the estimated total system load to compute the appropriate gains. It
then issues the following message,

*TUN NG_COWPLETE
>

The Four In order to compute the proper gains for an application, there has to be some

Options desired final closed-loop performance specified. Different sets of gains
result in different final performances. To make this choice easier for you,
the TUNE command provides four optional final motor responses as describe
below.

0 Option one specifies responses with very low overshoot but limited in position
stiffness.

O Option two specifies responses with some overshoot on fast accelerations but
greater in position stiffness.

O Option three specifies responses with high in-position stiffness and greater
overshoot on fast accelerations than options one and two.

0 Option four specifies responses using a lower set of gains for very large loads.

Tuning a servo system always involves trade-offs in selecting desired
performance characteristics. These four options offer you flexibility in
tuning your Compumotor Plus.

After the self-tuning command has calculated the new gains, the
Compumotor Plus re-energizes the amplifier. The system then waits
approximately five seconds with the new gains in place to confirm that the
system is stable.

Do not touch the rotor at this time because this will be interpreted as
instability in the system. When the calculated gains are found to be unstable,
the system will send the message TUNI NG_COVMPLETE to the terminal and
return the system to the PIDV control scheme.

The TUNE command is designed to catch all instances of unstable gains and
default to PIDV when they occur. Nonetheless, it is a good idea to make sure
that the maximum following error is set to a reasonable value (e.g. 1 rev) with
the CPE command before self-tuning. This causes the Compumotor Plus to
fault if the motor moves more than one revolution away from the
commanded position.

The gains computed with the TUNE command form a control structure
known as a Pole-Placed Controller. These gains are not directly compatible
with the PIDV control structure. This means that either you use the self-
tuning gains or you use the PIDV gains. The GAI NX command allows you to
switch between these different control schemes at any time. GAI NX: 1
implements the self-tuning gains previously computed; GAI NX: 0
implements the PIDV gains. This command is a buffered command so it can
be used in sequences. This command is also independently saved so you can
determine which control scheme will be in effect when the system is powered
up.

Do not issue the GAl NX: 1 command when self-tuning has not been
performed and do not issue this command if the results of the self-tuning
were unstable gains. Issuing GA/ NX: 1 under these conditions can result in
motor instability.

Self Tuning Procedure

[l Application Design 47

Tuning Problems

48

Step [

Step [

Step [

Step U

Step [

Ringing and
Overshoot

Position Errors
Due to Load
Inertia

Slow Response
Due to Load
Inertia

Position Errors
Due to Friction

Mount the motor and connect it to the load. Motor should be firmly mounted
and there should be no slippage in the coupling.

The TUNE command takes two parameters: tuning-move and tuning-option.
In the command TUNE: m o the mrefers to the tuning-move and the o refers
to the tuning-option.

a. Determine which tuning move to use. If the load cannot move in a particular
direction or if there is known backlash in the system, use TUNE: 2, o0 or
TUNE: 3, 0. Otherwise use TUNE: 1, o.

b. Determine what closed-loop response you want for your application. If in-
position stiffness is important, use TUNE: m 2 or TUNE: m 3. If low overshoot is
important, use TUNE: m 1. If you are using a larger load.

Issue the TUNE command. If you want to use tuning-move 1 with tuning-
option 2 type the following:

> TUNE: 1, 2

If the motor does not move, reset the system and check your limit status. The
motor must move for self-tuning to work properly.

Wait for the system to compute new gains. When the amplifier is re-
energized, do not touch the rotor until the system has responded with the
following.

>* TUNI NG_COMPLETE

If no error message has been sent to the terminal, the new self-tuned gains
are now in place. If you wish to save these gains in non-volatile memory,
issue the SV command. Once saved, this control structure is automatically
put in use when the system is reset or powered up. To return to PIDV control,
issue the GAl NX: 0 command. To have PIDV control implemented on power-
up, issue SV after GAI NX: O .

The following section describes common problems you may run into while
tuning your system

If the system exhibits excessive overshoot (when making the transition from
acceleration to constant velocity or from deceleration to a stop), it may be
caused by a commanded acceleration that is much higher than the system
can actually achieve. If this occurs, reduce the move acceleration with the A
command until the overshoot is at an acceptable level. Reducing the integral
gain also limits overshoot in most cases.

Load is the inertia (mass times the radius of rotation squared) seen by the
shaft of the motor (measured in 0z/in/in). The amount of inertia affects the
torque required. The torque required is a function of acceleration and
inertia. If you find that your load inertia is larger than 10 times the motor
inertia, you may want to trade some speed performance for accuracy at the
final position. In this case, reduce the velocity gain and increase the integral
gain.

In a system where the load inertia is larger than the factory setting supports,
it may be possible to improve the system response by allowing the overshoot
to increase. In this case, increase the velocity gain, increase the
proportional gain, and decrease the integral gain.

If load friction represents a large percentage of the motor's torque, the end-
of-move position may have an unacceptable error. In this case, you can trade
off system response for final position accuracy. To do this, increase the
integral gain, increase the derivative gain, and if necessary, decrease
proportional or velocity gains.

Compumotor Plus ™ User Guide

Shaft and
Coupling
Vibration

Inadequate
Response Time
(Frequency
Response)

If the load is coupled to the shaft through a non-rigid coupler, it is possible
for the shaft and coupler to oscillate at a frequency greater than the system's
natural frequency. In this case, it may be possible to trade system response
for system stability. To do this increase the integral and derivative gains,
while decreasing velocity or proportional gains.

Some systems may involve very little inertia, but need very high
acceleration. In this case, you may want to narrow the range of values that
the system can handle to optimize the move profile for a light load. To do
this, increase the proportional and velocity gains while decreasing the
integral gain.

[l Application Design 49

